

MIN-Fakultät Fachbereich Informatik Arbeitsbereich SAV/BV (KOGS)

Image Processing 1 (IP1) Bildverarbeitung 1

Lecture 3 – Image Understanding and Image Formation

Winter Semester 2015/16

Slides: Prof. Bernd Neumann Slightly revised by: Dr. Benjamin Seppke & Prof. Siegfried Stiehl

Definition of Image Understanding

Image understanding is the task-oriented reconstruction and interpretation of a scene by means of images

- "scene": section of the real world
 - stationary (3D) or
 - moving (4D)
- "image": view of a scene
 - projection, density image (2D)
 - depth image (2 1/2D)
 - image sequence (3D)
- "reconstruction and interpretation": computer-internal scene description
 - Quantitative
 - Qualitative
 - Symbolic
- "task-oriented": for a purpose, to fulfil a particular task
 - context-dependent,
 - supporting actions of an agent

Illustration of Image Understanding

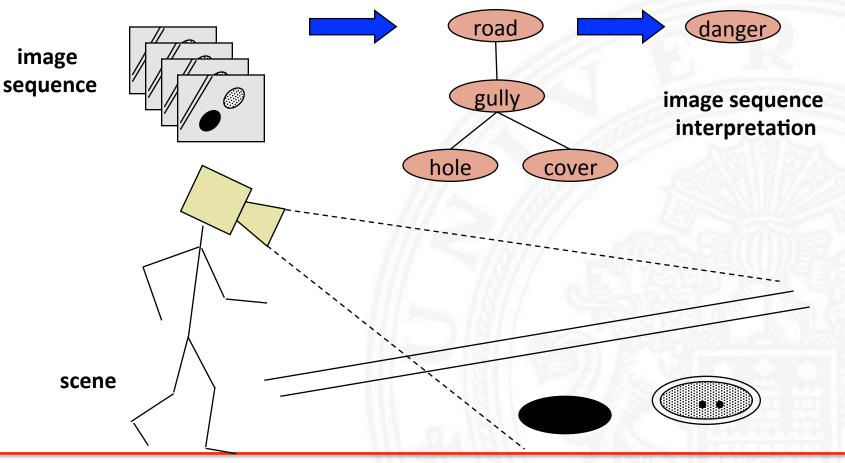
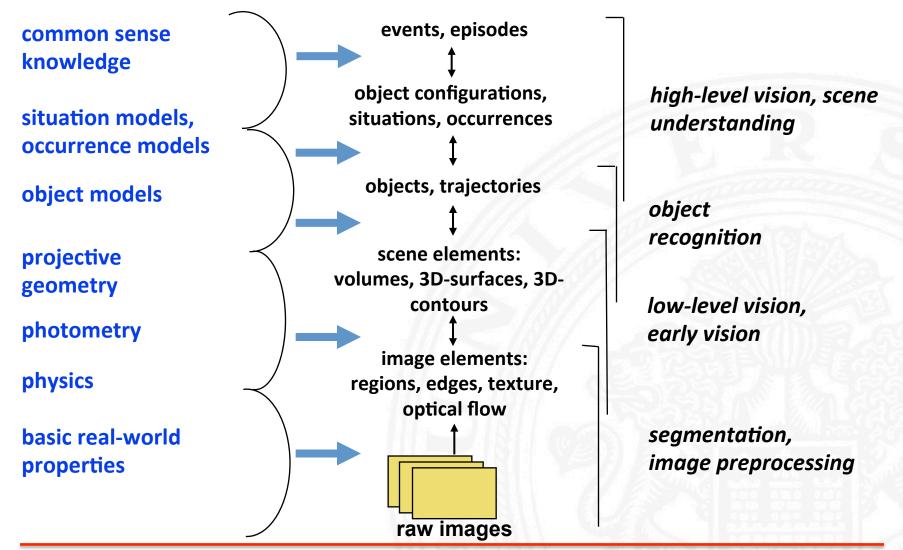
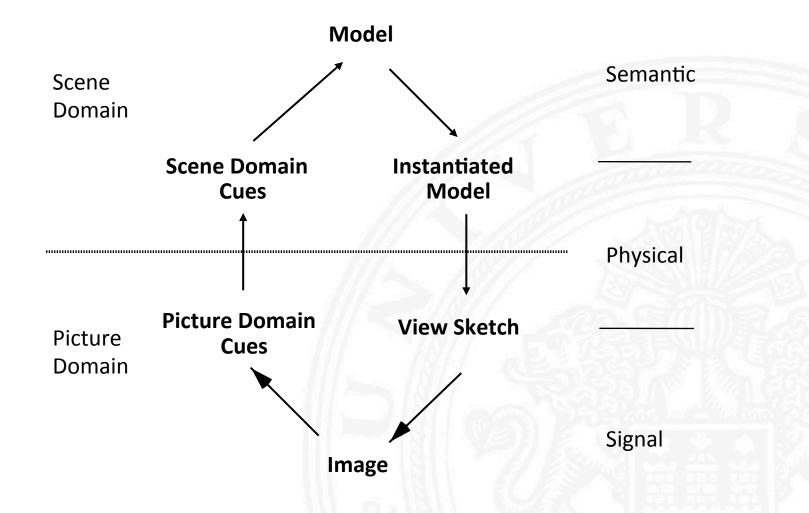


Image Understanding as a Knowledge-based Process



A Model of Scene Analysis (Kanade 78)



Abstraction Levels for the Description of Computer Vision Systems

Knowledge level

What knowledge or information enters a process? What knowledge or information is obtained by a process?

What are the laws and constraints which determine the behavior of a process?

Algorithmic level

How is the relevant information represented?

What algorithms are used to process the information?

Implementation level

What programming language is used?

What computer hardware is used?

Example for Knowledge-level Analysis

What knowledge or information enters a process? What knowledge or information is obtained by a process?

What are the laws and constraints which determine the behavior of a process?

Consider shape-from-shading:

In order to obtain the 3D shape of an object, it is necessary to:

- state what knowledge is available (greyvalues, surface properties, illumination direction, etc.)
- state what information is desired (e.g. qualitative vs. quantitative)
- exploit knowledge about the physics of image formation

Image Formation

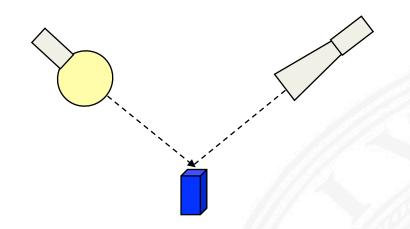
Images can be generated by various processes:

- Illumination of surfaces, measurement of reflections
- Illumination of translucent material, measurement of irradiation
- measurement of heat (infrared) radiation
- X-ray of material, computation of density map
- measurement of any features by means of a sensory array

physical signal sensory array

Natural Images

Formation of Natural Images



Intensity (brightness) of a pixel depends on

- 1. illumination (spectral energy, secondary illumination)
- 2. object surface properties (reflectivity)
- 3. sensor properties
- 4. geometry of light-source, object and sensor constellation (angles, distances)
- 5. transparency of irradiated medium (mistiness, dustiness)

Qualitative Surface Properties

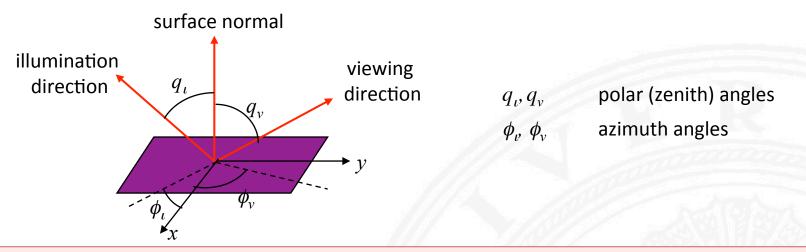
When light hits a surface, it may be

- absorbed
- Reflected
 in general, all effects may be mixed
- scattered

Simplifying assumptions:

- Radiance leaving at a point is due to radiance arriving at this point
- All light leaving the surface at a wavelength is due to light arriving at the same wavelength
- Surface does not generate light internally
- The "amount" of reflected light may depend on:
 - the "amount" of incoming light
 - the angles of the incoming light w.r.t. to the surface orientation
 - the angles of the outgoing light w.r.t. to the surface orientation

Photometric Surface Properties

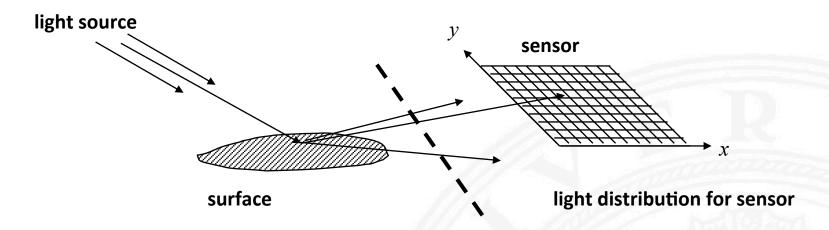


In general, the ability of a surface to reflect light is given by the Bi-directional Reflectance Distribution Function (BRDF) *r*:

 $r(\theta_l, \phi_l; \theta_v, \phi_v) = \frac{\delta_L(\theta_v, \phi_v)}{\delta_E(\theta_l, \phi_l)} \quad \text{radiance of surface patch towards viewer}$ irradiance of light source received by the surface patch

For many materials the reflectance properties are rotation invariant, in this case the BRDF depends on q_v , q_v , ϕ , where $\phi = \phi_t - \phi_v$.

Intensity of Sensor Signals



Intensities of sensor signals depend on

- location x, y on sensor plane
- instance of time t
- frequency of incoming light wave λ
- spectral sensitivity of sensor

$$f(x, y, t) = \int_{0}^{\infty} C(x, y, t, \lambda) S(\lambda) d\lambda$$

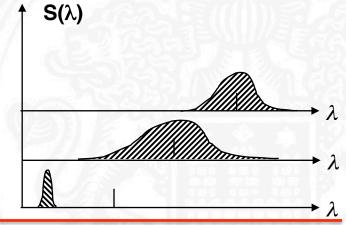
sensitivity function of sensor spectral energy distribution

Multispectral Images

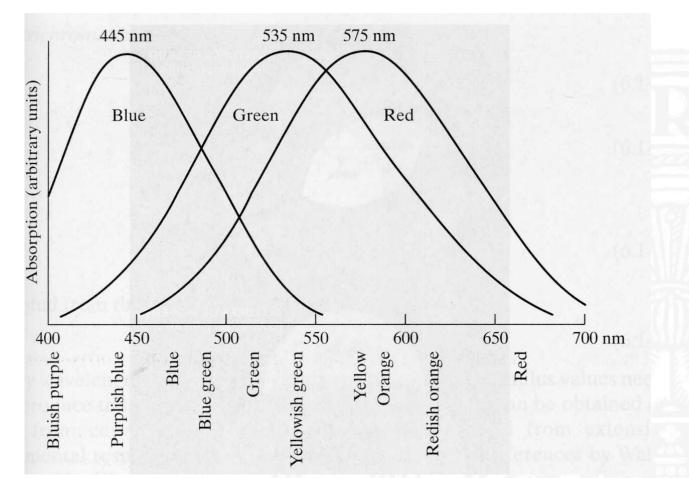
• Sensors with *n* separate channels of different spectral sensitivities generate multispectral images:

$$f_{1}(x, y, t) = \int_{0}^{\infty} C(x, y, t, \lambda) S_{1}(\lambda) d\lambda$$
$$f_{2}(x, y, t) = \int_{0}^{\infty} C(x, y, t, \lambda) S_{2}(\lambda) d\lambda$$
$$\vdots$$
$$f(x, y, t) = \int_{0}^{\infty} C(x, y, t, \lambda) S_{2}(\lambda) d\lambda$$

- Example:
 - R (red)
 650 nm center frequency
 - G (green) 530 nm center frequency
 - B (blue) 410 nm center frequency



Spectral Sensitivity of Human Eyes



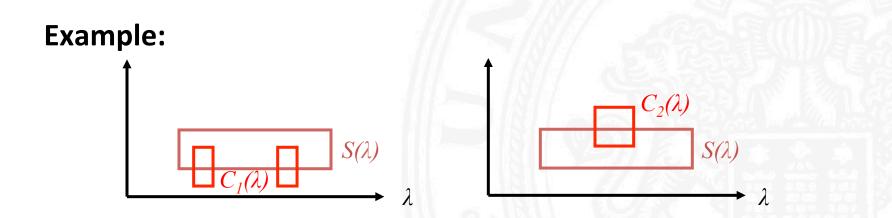
Standardized wavelengths: red = 700 nm, green = 546.1 nm, blue = 435.8 nm

Non-unique Sensor Response

Different spectral distributions may lead to identical sensor responses and hence cannot be distinguished

$$f_1(x, y, t) = \int_0^\infty C_1(x, y, t, \lambda) S(\lambda) d\lambda = \int_0^\infty C_2(x, y, t, \lambda) S(\lambda) d\lambda$$

different spectral energy distributions



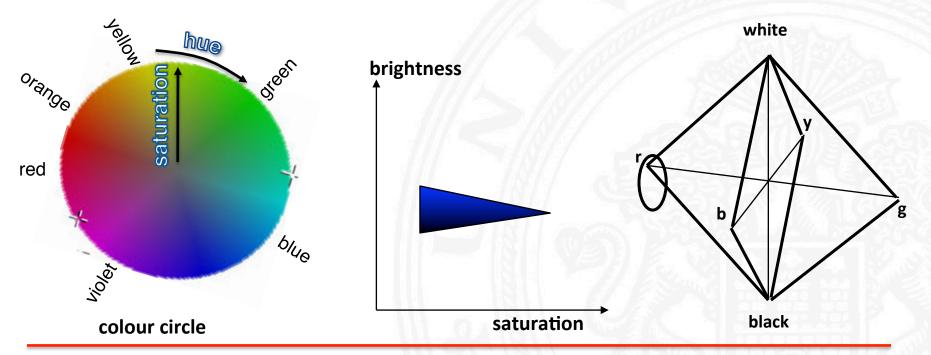
Dimensions of Colour

Human perception of colour distinguishes between 3 dimensions:

- Hue chromaticity
- Saturation
- Brightness

NCS* colour spindle

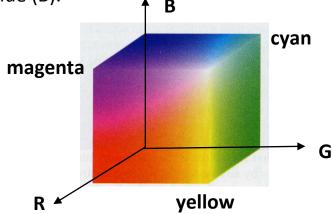
* Swedish Natural Colour System



Computer Vision Colour Models

RGB colour model

Different colors are generated by adding different portions of red (R), green (G), and blue (B).



RGB is the most commonly used color space in Computer Vision.

Typical discretization:

8 bits per colour dimension

→ 16.777.216 colours

HSI colour model

Different colors are described by Hue (H), Saturation (S), and Intensity (I). Can be derived from RGB model:

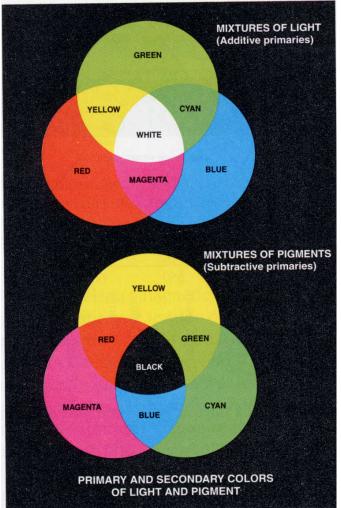
$$H = \begin{cases} Q & \text{if } B \le G \\ 360 - Q & \text{if } B > G \end{cases}$$
$$Q = \arccos\left(\frac{\frac{1}{2}\left[(R - G) + (R - B)\right]}{\sqrt{(R - G)^2 + (R - B)(G - B)}}\right)$$

$$S = 1 - \frac{3}{R + G + B} \min(R, G, B)$$

$$I = \frac{R+G+B}{3}$$

Closer to human perception Better choice e.g. for selecting colors!

Primary and Secondary Colours



Primary colours:

red, green, blue

Secondary colours:

magenta = red + blue cyan = green + blue yellow = red + green

from: Gonzales & Woods Digital Image Processing Prentice-Hall 2002

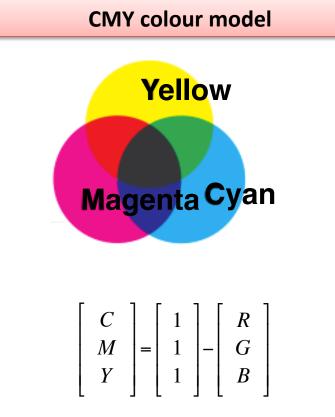
RGB Images of a Natural Scene

Here, single colour images are rendered as greyvalue intensity images:

stronger spectral intensity = more brightness

Printing Color Models

Subtractive color model because of white background!



CMYK colour model

A combination of C, M, and Y typically cannot produce a clear, dark black. Therefore a fourth black ink (K for 'key' or blac'k') is used in addition.

Discretization of Images

Image functions must be discretized for computer processing:

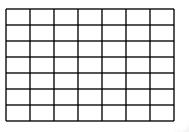
- spatial quantization
 the image plane is represented by a 2D array of picture cells
- greyvalue quantization
 each greyvalue is taken from a discrete value range
- temporal quantization greyvalues are taken at discrete time intervals

$$f(x, y, t) \Rightarrow \begin{cases} f_s(x_1, y_1, t_1), f_s(x_2, y_2, t_1), f_s(x_3, y_3, t_1), \dots \\ f_s(x_1, y_1, t_2), f_s(x_2, y_2, t_2), f_s(x_3, y_3, t_2), \dots \\ f_s(x_1, y_1, t_3), f_s(x_2, y_2, t_3), f_s(x_3, y_3, t_3), \dots \end{cases}$$

A single value of the discretized image function is called a <u>pixel</u> (picture element).

Spatial Quantization

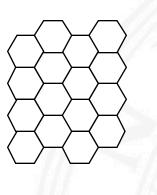
Rectangular grid



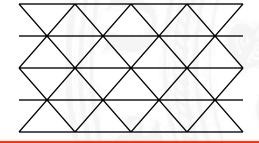
Greyvalues represent the quantized value of the signal power falling into a grid cell.

Hexagonal grid

Triangular grid

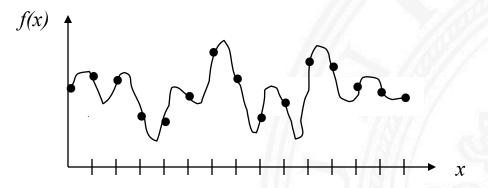


Note that samples of a hexagonal grid are equally spaced along rows, with successive rows shifted by half a sampling interval.



Reconstruction from Samples

- Under what conditions can the original (continuous) signal be reconstructed from its sampled version?
- Consider a 1-dimensional function *f*(*x*):



• Reconstruction is only possible, if "variability" of function is restricted.

Sampling Theorem

Shannon's Sampling Theorem:

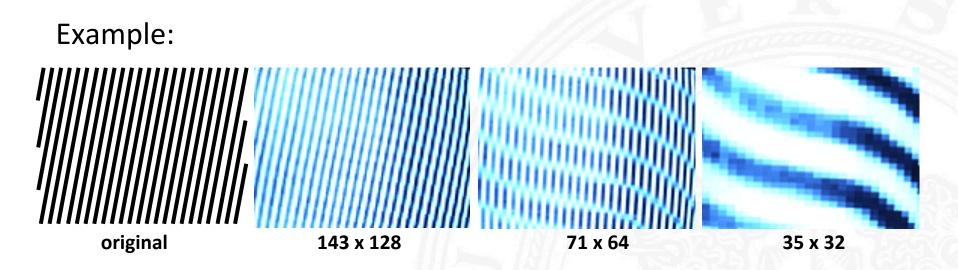
A bandlimited function with bandwidth W can be exactly reconstructed from equally spaced samples, if the sampling distance is not larger than $\frac{1}{2W}$.

Bandwidth = largest frequency contained in signal (=> Fourier decomposition of a signal)

Analogous theorem holds for 2D signals with limited spatial frequencies W_x and W_y

Aliasing

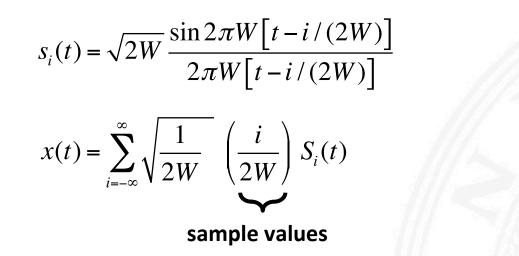
Sampling an image with fewer samples than required by the sampling theorem may cause "aliasing" (artificial structures).

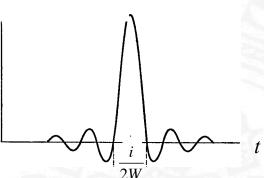


To avoid aliasing, bandwidth of image must by reduced prior to sampling (=> low-pass filtering)

Reconstructing the Image Function from Samples

Formally, a continuous function f(t) with bandwidth W can be exactly reconstructed using sampling functions $s_i(t)$:





 $S_i(t)$

An analogous equation holds for 2D.

In practice, image functions are generated from samples by interpolation.

Sampling TV Signals

PAL standard:

- picture format 3 : 4
- 25 full frames (50 half frames) per second
- interlaced rows: 1, 3, 5, ..., 2, 4, 6, ...
- 625 rows per full frame, 576 visible
- 64 ms per row, 52 ms visible
- 5 MHz bandwidth

Only 1D sampling is required because of fixed row structure.

Sampling intervals of $Dt = 1/(2W) = 10^{-7}s = 100$ ns give maximal possible resolution.

With Dt = 100 ns, a row of duration 52 ms gives rise to 520 samples.

In practice, one often chooses 512 pixels per TV row.

 \rightarrow 576 x 512 = 294912 pixels per full frame