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Defini&on	of	Image	Understanding	

•  "scene": 	sec=on	of	the	real	world	
–  sta=onary	(3D)	or		
–  moving	(4D)	

•  "image": 	view	of	a	scene	
–  projec=on,	density	image	(2D)	
–  depth	image	(2	1/2D)	
–  image	sequence	(3D)	

•  "reconstruc=on	and	interpreta=on“:	computer-internal	scene	descrip=on	
–  Quan=ta=ve	
–  Qualita=ve	
–  Symbolic	

•  "task-oriented": 	for	a	purpose,	to	fulfil	a	par=cular	task	
–  context-dependent,		
–  suppor=ng	ac=ons	of	an	agent	
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Image	understanding	is	the	task-oriented	reconstruc&on	
and	interpreta&on	of	a	scene	by	means	of	images		
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Illustra&on	of	Image	Understanding	
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Image	Understanding	as	a	Knowledge-based	Process	

IP1	–	Lecture	3:	Image	Understanding	and	Image	Forma=on	
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	A	Model	of	Scene	Analysis	(Kanade	78)	

5
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Abstrac&on	Levels	for	the	Descrip&on		
of	Computer	Vision	Systems	

IP1	–	Lecture	3:	Image	Understanding	and	Image	Forma=on	
	
	

Knowledge	level	

What	knowledge	or	informa2on	enters	a	process?	What	knowledge	or	informa2on	is	
obtained	by	a	process?	

What	are	the	laws	and	constraints	which	determine	the	behavior	of	a	process?	

Algorithmic	level	

How	is	the	relevant	informa2on	represented?		

What	algorithms	are	used	to	process	the	informa2on?	

Implementa&on	level	

What	programming	language	is	used?		

What	computer	hardware	is	used?	
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Example	for	Knowledge-level	Analysis	

•  Consider shape-from-shading: 
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What	knowledge	or	informa&on	enters	a	process?	What	knowledge	or	informa&on	
is	obtained	by	a	process?	

What	are	the	laws	and	constraints	which	determine	the	behavior	of	a	process?	

In order to obtain the 3D shape of an object, it is necessary to: 
-  state what knowledge is available  

(greyvalues, surface properties, illumination direction, etc.) 
-  state what information is desired  

(e.g. qualitative vs. quantitative) 
-  exploit knowledge about the physics of image formation 

19.10.15	 University	of	Hamburg,	Dept.	Informa=cs	 7	



Image	Forma&on	
 

Images can be generated by various processes: 
–  Illumination of surfaces, measurement of reflections 

–  Illumination of translucent material, measurement of irradiation 

–  measurement of heat (infrared) radiation 

–  X-ray of material, computation of density map 

–  measurement of any features by means of a sensory array 
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physical	signal	

sensory	array	

Natural	Images	
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Forma&on	of	Natural	Images	

	
	
	
Intensity	(brightness)	of	a	pixel	depends	on	
1.  illumina=on	(spectral	energy,	secondary	illumina=on)	
2.  object	surface	proper=es	(reflec=vity)	

3.  sensor	proper=es	
4.  geometry	of	light-source,	object	and	sensor	constella=on	(angles,	distances)	
5.  transparency	of	irradiated	medium	(mis=ness,	dus=ness)	
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Qualita&ve	Surface	Proper&es	

When	light	hits	a	surface,	it	may	be	
–  absorbed	
–  Reflected	
–  scaaered	

Simplifying	assump=ons:	
–  Radiance	leaving	at	a	point	is	due	to	radiance	arriving	at	this	point	
–  All	light	leaving	the	surface	at	a	wavelength	is	due	to	light	arriving	at	the	same	

wavelength	
–  Surface	does	not	generate	light	internally	

The	"amount"	of	reflected	light	may	depend	on:	
–  the	"amount"	of	incoming	light	
–  the	angles	of	the	incoming	light	w.r.t.	to	the	surface	orienta=on	
–  the	angles	of	the	outgoing	light	w.r.t.	to	the	surface	orienta=on		
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in	general,	all	effects	may	be	mixed	

19.10.15	 University	of	Hamburg,	Dept.	Informa=cs	 10	



Photometric	Surface	Proper&es		

	
	

In	general,	the	ability	of	a	surface	to	reflect	light	is	given	by	the		
Bi-direc=onal	Reflectance	Distribu=on	Func=on	(BRDF)	r:	
	
	
	
For	many	materials	the	reflectance	proper=es	are	rota=on	invariant,	
in	this	case	the	BRDF	depends	on	qι, qv, φ, where φ = φι - φv.   
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surface	normal	

viewing	
direc=on	

illumina=on	
direc=on	 qι 

qv 

x 

y 

φι 
φv 

qι, qv   polar	(zenith)	angles	

φι, φv    azimuth	angles	

radiance	of	surface	patch	towards	viewer	

irradiance	of	light	source	received	by	the	surface	patch	
r θl,φl ;θv,φv( ) =

δL θv,φv( )
δE θl,φl( )
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Intensity	of	Sensor	Signals	

	
	
	
	
Intensi=es	of	sensor	signals	depend	on	

–  loca=on	x, y on	sensor	plane	
–  instance	of	=me t 
–  frequency	of		incoming	light	wave	λ 
–  spectral	sensi=vity	of	sensor	
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light	source	

surface	

sensor	

x 

y 

light	distribu&on	for	sensor	

sensi=vity	func=on	of	sensor	
spectral	energy	distribu=on	

f (x, y, t) = C(x, y, t,λ)S(λ)dλ
0

∞

∫
∞
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Mul&spectral	Images	
•  Sensors	with	n	separate	channels	of	different	spectral	sensi=vi=es	

generate	mul=spectral	images:	

•  Example:	
–  R	(red) 	 	650	nm	center	frequency	

–  G	(green) 	 	530	nm	center	frequency	
–  B	(blue) 	 	410	nm	center	frequency		

IP1	–	Lecture	3:	Image	Understanding	and	Image	Forma=on	
	
	

S(λ)

λ

f1(x, y, t) = C(x, y, t,λ)S1(λ)dλ
0

∞

∫

f2 (x, y, t) = C(x, y, t,λ)S2 (λ)dλ
0

∞

∫

!

fn (x, y, t) = C(x, y, t,λ)Sn (λ)dλ
0

∞

∫

λ

λ
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Spectral	Sensi&vity	of	Human	Eyes	
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Standardized	wavelengths:	red	=	700	nm,	green	=	546.1	nm,	blue	=	435.8	nm	
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Non-unique	Sensor	Response	

IP1	–	Lecture	3:	Image	Understanding	and	Image	Forma=on	
	
	

Different	spectral	distribu&ons	may	lead	to	iden&cal	sensor	
responses	and	hence	cannot	be	dis&nguished	

different	spectral	energy	distribu&ons	

Example:	

S(λ) S(λ) 

λ λ 
C1(λ) 

C2(λ) 

f1(x, y, t) = C1(x, y, t,λ)S(λ)dλ
0

∞

∫ = C2 (x, y, t,λ)S(λ)dλ
0

∞

∫
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Dimensions	of	Colour	
Human	percep=on	of	colour	dis=nguishes	between	3	dimensions:	

–  Hue	
–  Satura=on	
–  Brightness	
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red

colour	circle	

brightness	
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Different	colors	are	described	by	Hue	(H),	
Satura=on	(S),	and	Intensity	(I).	Can	be	derived	
from	RGB	model:	

	

	

	

	

	

	

	

	

	

Closer	to	human	percep=on	

Beaer	choice	e.g.	for	selec=ng	colors!	

Computer	Vision	Colour	Models	
	

Different	colors	are	generated	by	adding	
different	por=ons	of	red	(R),	green	(G),	and	
blue	(B).	

	

	

	

	

	

	

RGB	is	the	most	commonly	used	color	space	
in	Computer	Vision.	

Typical	discre&za&on:	

8	bits	per	colour	dimension	

à		16.777.216	colours	
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RGB	colour	model	

cyan	

R	

G	

B	

yellow	

magenta	

HSI	colour	model	

H =
Q if B ≤G

360−Q if B >G

#
$
%

&%

Q = arccos
1
2 (R−G)+ (R−B)[ ]

(R−G)2 + (R−B)(G −B)

'

(
))

*

+
,,

S =1− 3
R+G +B

min(R,G,B)

I = R+G +B
3
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Primary	and	Secondary	Colours	

IP1	–	Lecture	3:	Image	Understanding	and	Image	Forma=on	
	
	

Primary	colours:	

red,	green,	blue	

	
	
Secondary	colours:	

magenta	=	red	+	blue	
cyan	=	green	+	blue	
yellow	=	red	+	green	

from:	Gonzales	&	Woods	
Digital	Image	Processing	
Pren&ce-Hall	2002	
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RGB	Images	of	a	Natural	Scene	

Here,	single	colour	images	are	rendered	as	greyvalue	intensity	images:	

stronger	spectral	intensity	=	more	brightness	
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R+G+B 	 							R 	 	 	G 	 				B	
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Prin&ng	Color	Models	

Subtrac=ve	color	model	because	of	white	background!	
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CMYK	colour	model	

A	combina=on	of	C,	M,	and	Y	typically	
cannot	produce	a	clear,	dark	black.	
Therefore	a	fourth	black	ink		
(K	for	'key'	or	blac'k')	
is	used	in	addi=on.	CyanMagenta

Yellow

CMY	colour	model	
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Discre&za&on	of	Images	

Image	func=ons	must	be	discre=zed	for	computer	processing:	
–  spa=al	quan=za=on	

the	image	plane	is	represented	by	a	2D	array	of	picture	cells	

–  greyvalue	quan=za=on	
each	greyvalue	is	taken	from	a	discrete	value	range	

–  temporal	quan=za=on	
greyvalues	are	taken	at	discrete	=me	intervals	
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A	single	value	of	the	discre&zed	image	func&on	is	called	a	pixel		
(picture	element).	

f (x, y, t) ⇒
fs (x1,  y1, t1),   fs (x2,  y2, t1), fs (x3,  y3, t1),  ...
 fs (x1,  y1, t2 ),   fs (x2,  y2, t2 ), fs (x3,  y3, t2 ),  ...
 fs (x1,  y1, t3),   fs (x2,  y2, t3), fs (x3,  y3, t3),  ... 

"

#
$

%
$

&

'
$

(
$
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Spa&al	Quan&za&on	
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Rectangular	grid	

Note	that	samples	of	a	
hexagonal	grid	are	equally	
spaced	along	rows,	with	
successive	rows	shiqed	by	half	a	
sampling	interval.	

Hexagonal	grid	

Triangular	grid	

Greyvalues	represent	the	
quan=zed	value	of	the	signal	
power	falling	into	a	grid	cell.	

•			•			•			•			•			•	
•			•			•			•			•			•	
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Reconstruc&on	from	Samples	
•  Under	what	condi=ons	can	the	original	(con=nuous)	signal	be	

reconstructed	from	its	sampled	version?	

•  Consider	a	1-dimensional	func=on		f(x):	

•  Reconstruc=on	is	only	possible,	if	"variability"	of	func=on	is	
restricted.	
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•	 •	
•	 •	

•	

•	
•	

•	 •	

•	 •	
•	 •	 •	

x 

f(x) 

•	
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Sampling	Theorem	

Shannon´s	Sampling	Theorem:	

A	bandlimited	func=on	with	bandwidth	W	can	be	exactly	
reconstructed	from	equally	spaced	samples,	if	the	sampling	

distance	is	not	larger	than								.	
	
Bandwidth	=	largest	frequency	contained	in	signal	
(=>	Fourier	decomposi=on	of	a	signal)	
	

Analogous	theorem	holds	for	2D	signals	with	limited	spa=al	
frequencies	Wx	and	Wy 
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1
2W
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Aliasing	
Sampling	an	image	with	fewer	samples	than	required	by	the	
sampling	theorem	may	cause	"aliasing"	(ar=ficial	structures).	
	
Example:	

	

To	avoid	aliasing,	bandwidth	of	image	must	by	reduced	prior	to	
sampling	(=>	low-pass	filtering)	

25	
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										original													 																143	x	128											 								71	x	64																																35	x	32	
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Reconstruc&ng	the	Image	Func&on	
from	Samples	

Formally,	a	con=nuous	func=on	f(t) with	bandwidth	W	can	be	
exactly	reconstructed	using	sampling	func=ons	si(t):	
	
	
	
	
	
	
An	analogous	equa=on	holds	for	2D.	
In	prac=ce,	image	func=ons	are	generated	from	samples	by	
interpola=on.	
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si (t) = 2W
sin2πW t − i / (2W )[ ]
2πW t − i / (2W )[ ]

i
2W

t 

si(t) 

x(t) = 1
2W

 
i=−∞

∞

∑  i
2W
$

%
&

'

(
)  Si (t)

sample	values	
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Sampling	TV	Signals	

Only	1D	sampling	is	required	because	of	fixed	row	structure.	

Sampling	intervals	of	Dt	=	1/(2W)	=	10-7s	=	100	ns	give	maximal	possible	resolu=on.	

With	Dt	=	100	ns,	a	row	of	dura=on	52	ms	gives	rise	to	520	samples.	

In	prac=ce,	one	oqen	chooses	512	pixels	per	TV	row.		

	à	576	x	512	=	294912	pixels	per	full	frame	

	à	rectangular	pixel	size	with		
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width
height =

4
512
!

"
#

$

%
&

3
576
!

"
#

$

%
&
=1.5

PAL	standard:	
	-		picture	format	3	:	4	
	-		25	full	frames	(50	half	frames)	per	second	
	-		interlaced	rows:	1,	3,	5,	...	,	2,	4,	6,	...	
	-		625	rows	per	full	frame,	576	visible	
	-		64	ms	per	row,	52	ms	visible	
	-		5	MHz	bandwidth	

1.5	

1.0	
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